Jose Luis Contreras-Vidal
Dr. Jose Luis Contreras-Vidal, Fellow IEEE, Fellow AIMBE
Hugh Roy and Lillie Cranz Cullen Distinguished Professor, Director, NSF IUCRC BRAIN Center
Office Location W310 Engineering Building 1
Phone 713-743-4429
Fax 713-743-4444
Email jlcontreras-vidal [at] uh.edu
Engineer's Degree in Electronics & Communications, Monterrey Institute of Technology (ITESM), Monterrey, Mexico
M.S. in Electrical Engineering, University of Colorado at Boulder, Boulder, CO
Ph.D. in Cognitive and Neural Systems, Boston University, Boston, MA
Postdoctoral Fellow in Computational Motor Neuroscience, Arizona State University, Tempe, AZ
Human Frontiers Science Postdoctoral Fellow, University of Fribourg, Switzerland, Fribourg, Switzerland
Professional Experience
Director, University of Houston NSF IUCRC BRAIN Center, since March 2017
Full Affiliate, The Houston Methodist Hospital Research Institute Houston, Texas, 2013-present
University of Maryland-College Park; Assistant (1999) and Associate (2005) Professor, 1999-2011
Director, Human-Machine Interface Systems, The Institute for Rehabilitation and Research (TIRR) Memorial Hermann, Houston, Texas; 2015-present
ECE 5397/ECE 6397 Robotics in Healthcare
ECE 6397 Brain-Machine Interface Systems
Awards & Honors
Elected IEEE Fellow for contributions to brain-machine interfaces and wearable exoskeletons, 2019
Undergraduate Research Mentor Award, University of Houston, 2018
Research & Development Award, Cullen College of Engineering, University of Houston, 2014
NIH Bioengineering of Neuroscience, Vision, and Low Vision Technologies (BNVT) Study Section, 2014-2018
President, International Graphonomics Society, 2013-2015
Research and Development Award, School of Public Health, University of Maryland, 2011
NIH MFSR: Motor function, Speech and Rehabilitation Study section, 2006-2010
Institute of Electrical and Electronic Engineering (IEEE), Senior Member , 2008
Senior Research Scholar, City of Paris, France
NIH 2011/10 ZRG1 BBBP-V (10) B: Small Business: Biobehavioral and Behavioral Processes across the Lifespan Study Section
Editorial Boards
IEEE Transactions in Human-Machine Systems (Action Editor)
(Editor-in-Chief) Mobile Brain-Body Imaging and the Neuroscience of Art, Innovation and Creativity, Springer Series on Bio- and Neurosystems, 2019, Springer International Publishing; DOI:10.1007/978-3-030-24326-5
Frontiers in Neuroprosthetics (Review Editor)
International Journal of Mobile Human Computer Interaction (Editorial Review Board)
Human Movement Science (Guest Editor), 2012 Special Issue on Neuroscience of Fine Motor Control Across the Lifespan
Research Interests

Neural Engineering, Neurohumanities, Powered Exoskeletons, Brain-Machine Interfaces, Neuromodulation, Computational Neuroscience, Regulatory Science of Medical Devices, Arts in Medicine, Neuroaesthetics and Creativity

Funded Research
National Science Foundation Award #1757949; REU Site: Neurotechnologies to Help the Body Move, Heal, and Feel Again; 2/2018 - 4/2021 ($427,371.00)
National Science Foundation Award #1745835; WORKSHOP: Doctoral Consortium at the 2017 International Conference of Mobile Brain Body Imaging (MoBI) and the Neuroscience of Art, Innovation and Creativity; 5/2019 - 4/2020 ($15,000)
National Science Foundation Award #1827769; PFI-RP: Brain-controlled Upper-Limb Robot-Assisted Rehabilitation Device for Stroke Survivors; 9/2018 - 8/2022 ($781,999.00)
National Institutes of Health Award # 1R01EB027004-01; A high-performance unshielded wearable brain-computer interface based on microfabricated total-field OPMs; 7/2018 - 8/2021 ($877,100)
National Science Foundation, CNS-1650536: Industry-University Collaborative Research Center for Building Reliable Advances and Innovations in Neurotechnology (BRAIN), 3/2017-3-2022 ($750,000).
Mission Connect - A TIRR Foundation; Bridge Funding: Brain-Robot Interface Study; 5/17-4/18;($30,000).
National Science Foundation Award 1745835, WORKSHOP: Doctoral Consortium at the 2017 International Conference of Mobile Brain ­Body Imaging (MoBI) and the Neuroscience of Art, Innovation and Creativity, Valencia, Spain; 7/2017-6/2018 ($20,000)
National Science Foundation, BCS 1533691 : NCS-FO: Assaying neural individuality and variation in freely behaving people based on qEEG ($300,000), 2015-2017.
Mission Connect - A TIRR Foundation. Funds to study longitudinal stability of a brain-machine interface to a powered exoskeleton for individuals with paralysis; ($60,000), 2015-2017
Mission Connect - A TIRR Foundation; ($100,000). Funds to develop a pediatric powered exoskeleton for children with paralysis; 2015-2017
National Science Foundation, IIS-1302339; HCC: Medium: Collaborative Research: Neural Control of Powered Artificial Legs, in collaboration with Helen Huang; June 15, 2013- May 31, 2018 ($1.2M)
National Institute on Neurological Disorders and Stroke (NINDS); National Robotics Initiative: Brain-Machine Interface Control of a Therapeutic Exoskeleton; PIs: Contreras-Vidal (UH), Marcie O'Malley (Rice) and Gerard Francisco (TIRR); 8/1/-2012-3/30/2018; ($1,173,601)
National Institute of Neurological Disorders and Stroke, R13 NS082045-01 PI: CONTRERAS-VIDAL, JOSE; 2013 International workshop on Clinical Brain-Neural Machine Interfaces to be held at The Methodist Hospital Research Institute on Feb 24-27, 2013, ($20,000)
Eunice Kennedy Shriver National Institutes of Child Health & Human Development, Program Grant P01 HD064653-01; Functions and Development of the Mirror Neuron System. PIs: Amanda Woodward (U. Chicago), Nathan Fox (U. Maryland), Jose L. Contreras-Vidal (U. Houston), Pier Ferrara (U. Parma, Italy); 9/10/10 - 6/30/2016 ($6,011,677).
National Institute of Neurological Disorders and Stroke (NINDS) R01NS075889-01; Noninvasive neural decoding of walking PI: Contreras-Vidal; 07/2011-06/2016 ($1,332,380.00).
National Science Foundation, IIS-1313620; 2013 International Workshop on Clinical Brain-Neural Machine Interface Systems to be held at The Methodist Hospital Research Institute on Feb 24-27, 2013, ($18,152)
National Science Foundation HCC/IIS-1064703; HCC: Medium: Collaborative Research: Improved Control and Sensory Feedback for Neuroprosthetics. PIs: Jose L. Contreras-Vidal (U. Houston), Brent Gillespie (U. Michigan), Marcie O’Malley (Rice U.) and Patricia Shewokis (Drexel U.); 07/11-06/14 ($1.2M).
VA Merit Award 1RXDD0592-01; Developing a brain-machine interface for an ankle robot; PIs: Contreras-Vidal (U. Houston); Larry Forrester (U. Maryland School of Medicine & VA-Baltimore); 07/01/2011-06-30-2016; ($190,020).
National Institute on Aging (AG); PES-5 (Pilot subproject in P30 AG028747-06); A High-Density Electroencephalography (EEG) Neural Decoding Study of Dynamical Cortical Mapping of Gait in Humans After Stroke; PI: Contreras-Vidal (U. Houston; Co-PI: Forrester (U. Maryland School of Medicine & VA-Baltimore); (P30 PI: Goldberg; U. Maryland School of Medicine); 10/1/2011-9/30/2013; ($38,000/year)
University of Maryland ADVANCE Program; "Your Brain on Dance" ; PIs: Karen Kohn Bradley (UMD) and Jose L Contreras-Vidal (UH); 5/1/2012 - 4/30/2013; ($20,000)
Mission Connect - A TIRR Foundation; ($100,000). Gift to acquire a Rehab Rex robotic exoskeleton for brain-machine interface research.
Selected Publications

Luu TP, He Y, Nakagome S, Nathan K, Brown S, Gorges J, Contreras-Vidal JL. (2017). Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations. Front Hum Neurosci. 2017 Jun 20;11:320. doi: 10.3389/fnhum.2017.00320. eCollection 2017.

He Y, Eguren D, Luu TP, Contreras-Vidal JL. (2017). Risk management and regulations for lower limb medical exoskeletons: a review. Med Devices (Auckl). 2017 May 9;10:89-107. doi: 10.2147/MDER.S107134. eCollection 2017. Review.

Zhang Y, Prasad S, Kilicarslan A, Contreras-Vidal JL. (2017). Multiple Kernel Based Region Importance Learning for Neural Classification of Gait States from EEG Signals. Front Neurosci. 2017 Apr 3;11:170. doi: 10.3389/fnins.2017.00170. eCollection 2017.

Ozdemir RA, Contreras-Vidal JL, Lee BC, Paloski WH. (2016). Cortical activity modulations underlying age-related performance differences during posture-cognition dual tasking. Exp Brain Res. 2016 Nov;234(11):3321-3334. Epub 2016 Jul 21.

Agashe HA, Paek AY, Contreras-Vidal JL. (2016). Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees. Prog Brain Res. 2016;228:107-28. doi: 10.1016/bs.pbr.2016.04.016. Epub 2016 Jun 10.

Bhagat NA, Venkatakrishnan A, Abibullaev B, Artz EJ, Yozbatiran N, Blank AA, French J, Karmonik C, Grossman RG, O'Malley MK, Francisco GE, Contreras-Vidal JL. (2016) Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors. Front Neurosci. 2016 Mar 31;10:122. doi: 10.3389/fnins.2016.00122. eCollection 2016.

Luu TP, He Y, Brown S, Nakagame S, Contreras-Vidal JL. (2016). Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. J Neural Eng. 2016 Jun;13(3):036006. doi: 10.1088/1741-2560/13/3/036006. Epub 2016 Apr 11.

Contreras-Vidal JL, A Bhagat N, Brantley J, Cruz-Garza JG, He Y, Manley Q, Nakagome S, Nathan K, Tan SH, Zhu F, Pons JL. (2016). Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng. 2016 Jun;13(3):031001. doi: 10.1088/1741-2560/13/3/031001. Epub 2016 Apr 11. 

Bowsher K, Civillico EF, Coburn J, Collinger J, Contreras-Vidal JL, Denison T, Donoghue J, French J, Getzoff N, Hochberg LR, Hoffmann M, Judy J, Kleitman N, Knaack G, Krauthamer V, Ludwig K, Moynahan M, Pancrazio JJ, Peckham PH, Pena C, Pinto V, Ryan T, Saha D, Scharen H, Shermer S, Skodacek K, Takmakov P, Tyler D, Vasudevan S, Wachrathit K, Weber D, Welle CG, Ye M. (2016). Brain-computer interface devices for patients with paralysis and amputation: a meeting report. J Neural Eng. 2016 Apr;13(2):023001. doi: 10.1088/1741-2560/13/2/023001. Epub 2016 Feb 29.

Kilicarslan A, Grossman RG, Contreras-Vidal JL. (2016). A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. J Neural Eng. 2016 Apr;13(2):026013. doi: 10.1088/1741-2560/13/2/026013. Epub 2016 Feb 10.

Nathan K, Contreras-Vidal JL. (2016). Negligible Motion Artifacts in Scalp Electroencephalography (EEG) During Treadmill Walking. Front Hum Neurosci. 2016 Jan 13;9:708. doi: 10.3389/fnhum.2015.00708. eCollection 2015. 

Kontson KL, Megjhani M, Brantley JA, Cruz-Garza JG, Nakagome S, Robleto D, White M, Civillico E and Contreras-Vidal JL (2015) Your Brain on Art: Emergent Cortical Dynamics During Aesthetic Experiences. Front. Hum. Neurosci. 9:626. doi: 10.3389/fnhum.2015.00626

Agashe HA, Paek AY, Zhang Y, Contreras-Vidal JL. (2015) Global cortical activity predicts shape of hand during grasping. Front Neurosci. 2015 Apr 9;9:121. doi: 10.3389/fnins.2015.00121. eCollection 2015.

Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL. (2015) The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil. 2015 Jun 17;12:54. doi: 10.1186/s12984-015-0048-y.

Van Gemmert AW, Contreras-Vidal JL. (2015) Graphonomics and its contribution to the field of motor behavior: A position statement. Hum Mov Sci. 2015 Oct;43:165-8. doi: 10.1016/j.humov.2015.08.017.

Cruz-Garza JG, Hernandez ZR, Tse T, Caducoy E, Abibullaev B, Contreras-Vidal JL. (2015) A Novel Experimental and Analytical Approach to the Multimodal Neural Decoding of Intent During Social Interaction in Freely-behaving Human Infants. J Vis Exp. 2015 Oct 4;(104). doi: 10.3791/53406.

Contreras-Vidal JL, Kilicarslan A, Huang H, Grossman R (2015). Human-Centered Design of Wearable Neuroprostheses and Exoskeletons, AI Magazine, in press.

Agashe HA, Paek AY, Zhang Y and Contreras-Vidal JL (2015) Global cortical activity predicts shape of hand during grasping. Front. Neurosci. 9:121. doi: 10.3389/fnins.2015.00121

Tamez-Duque J, Cobian-Ugalde R, Kilicarslan A, Venkatakrishnan A, Soto R, Contreras- Vidal JL. (2015). Real-time strap pressure sensor system for powered exoskeletons. Sensors (Basel). 2015 Feb 16;15(2):4550-63. doi: 10.3390/s150204550.

Cruz-Garza JG, Hernandez ZR, Nepaul S, Bradley KK, Contreras-Vidal JL. (2014) Neural decoding of expressive human movement from scalp electroencephalography (EEG). Front Hum Neurosci. 2014 Apr 8;8:188. doi: 10.3389/fnhum.2014.00188

Bulea TC, Prasad S, Kilicarslan A, Contreras-Vidal JL. (2014). Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Front Neurosci. 2014 Nov 25;8:376. doi: 10.3389/fnins.2014.00376.

Kagerer FA, Viswanathan P, Contreras-Vidal JL, Whitall J. (2014). Auditory-motor integration of subliminal phase shifts in tapping: better than auditory discrimination would predict. Exp Brain Res. 2014 Apr;232(4):1207-18. doi: 10.1007/s00221-014-3837- 9.

Paek AY, Agashe H, Contreras-Vidal JL (2014). Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography. Front. Neuroeng., doi: 10.3389/fneng.2014.00003

Gentili RJ, Shewokis PA, Ayaz H, Contreras-Vidal JL. (2013) Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Front Hum Neurosci. 2013 Jul 4;7:277. doi: 10.3389/fnhum.2013.00277

Bulea, T.C., Kilicarslan, A., Ozdemir, R., Paloski, W.H., Contreras-Vidal, J.L. (2013). Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-Body Segmental Inertial Recording for Multi-Modal Neural Decoding. J. Vis. Exp. (), e50602, doi:10.3791/50602 (2013).

King BR, Oliveira MA, Contreras-Vidal JL, Clark JE. (2012) Development of state estimation explains improvements in sensorimotor performance across childhood. J Neurophysiol. 107(11):3040-9.

Presacco A, Forrester LW, Contreras-Vidal JL. (2012). Decoding lower-limb intra and inter-limb coordination during treadmill walking from scalp EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20 (2):212-9.

Contreras-Vidal JL, Presacco A, Agashe H, Paek A. (2012). Restoration of whole body movement: toward a noninvasive brain-machine interface system. IEEE Pulse. 2012 Jan; 3(1):34-7.

Bradberry TJ, Verhagen Metman L, Contreras-Vidal JL, van den Munckhof P, Hosey LA, Thompson JLW, Schulz GM, Lenz F, Pahwa R, Lyons KE, Braun AR. (2011) Common and unique responses to dopamine agonist therapy and deep brain stimulation in Parkinson’s disease: an H2150 PET study. Brain Stimulation, in press.

Presacco A, Goodman R, Forrester L, and Contreras-Vidal JL (2011). Neural decoding of walking from non-invasive, high-density electroencephalographic (EEG) signals. Journal of Neurophysiology, 106(4):1875-87, PMID: 21768121.

King BR, Kagerer FA, Harring JR, Contreras-Vidal JL, Clark, JE (2011). Multisensory adaptation of spatial-to-motor transformations in children with Developmental Coordination Disorder. Experimental Brain Research. 212(2): 257-65.

Gentili RJ, Bradberry TJ, Oh H, Hatfield BD, Contreras Vidal JL. (2011). Cerebral cortical dynamics during visuomotor transformation: Adaptation to a cognitive-motor executive challenge. Psychophysiology. 48(6): 813-24.

Rong F, Holroyd T, Husain FT, Contreras-Vidal JL, Horwitz B (2011). Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task. Front. Psychology, 2:85. doi: 10.3389/fpsyg.2011.00085, PMID: 21687454.

Venkatakrishnan A, Banquet JP, Burnod Y, Contreras-Vidal JL (2011) Parkinson's disease differentially affects adaptation to gradual as compared to sudden visuomotor distortions. Human Movement Science, 30(4): 760-9. PMID: 21414678. 

Rietschel JC, Goodman RN, King BR, Lo LC, Contreras-Vidal JL, Hatfield BD. (2011). Cerebral cortical dynamics and the quality of motor behavior during social evaluative challenge. Psychophysiology. 48(4): 479-87.

Swett BA, Contreras-Vidal JL, Birn R, Braun A. (2010). Neural substrates of graphomotor sequence learning: a combined fMRI and kinematic study. Journal of Neurophysiology. 103(6): 3366-77.

Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010). Reconstructing three-dimensional hand movements from non-invasive electroencephalographic signals. Journal of Neuroscience. 30(9): 3432-7.

Bradberry TJ, Rong F. Contreras-Vidal JL (2009). Decoding center-out hand velocity from MEG signals during visuomotor adaptation. Neuroimage, 47(4): 1691-700.


Gentili, R.J., Oh, H., Molina, J. & Contreras-Vidal, J.L. (2011). Neural Network Models for Reaching and Dexterous Manipulation in Humans and Anthropomorphic Robotic Systems. In Perception-Action Cycle Models, Architectures, and Hardware, Cutsuridis, V., Hussain, A. & Taylor, J.G. eds, New York: Springer, ch. 6.

Gentili R.J., Oh H., Bradberry T.J., Hatfield B.D., and Contreras-Vidal J.L. (2010). Signal Processing for Non-Invasive Brain Biomarkers of Sensorimotor Performance and Brain Monitoring. In: Signal Processing, Book edited by: Sebastian Miron, ISBN: 978- 953-7619-91-6, Publisher: InTech.

Contreras-Vidal JL (2009). Aplicaciones tecnológicas para evaluación de los trastornos no motores [Technological applications for the assessment of non-motor disorders]. In (P. Martinez Martin, Ed.) Trastornos no Motores en la Enfermedad de Parkinson, Viguera Editores, Madrid, Spain.

AL Karlson, BB Bederson, JL Contreras-Vidal (2008) Understanding One Handed Use of Mobile Devices, Chapter VI. In: Joanna Lumsden (Ed.), Handbook of Research on User Interface Design and Evaluation for Mobile Technology, Idea Group Reference (Publisher). ISBN: 978-1-59904-871-0.

JL Contreras-Vidal (2005) Computer Modeling in Basal Ganglia Disorders. In: I. Litvan (Ed.), Atypical Parkinsonian Disorders: Clinical and Research Aspects, Humana Press, Chapter 7, pp. 95-108, ISBN: 1588293319.

Patent/Patent Applications
Time domain-based methods for noninvasive brain-machine interfaces
US Patent number: 9468541; October 18, 2016
Publication number: 20150012111; Filed: July 3, 2014; Publication date: January 8, 2015
Refereed Conference Proceedings
Many entries, please search IEEE Explorer or PubMed for list of refereed Conference Proceedings

National Science Foundation. "At the Intersection of Science and Art" (November 17, 2015)

UH Moment: "Your Brain On Art" (Nov 17, 2015)

Der Spiegel, Science (Wissenschaft) section (May 2013, p. 136-137, issue 22)

UNIVISION; Tecnologia que cambia la vida (December 22, 2012)

National Public Radio, NPR: I, Robot: Paraplegics get an assist (November 14, 2012)

National Institute of Biomedical Imaging and Bioengineering, NIH announces national robotics initiative awardees: Brain Machine Interface (BMI) Control of a Therapeutic Robotic Exoskeleton (September 17, 2012)

National Science Foundation’s Discoveries Section (July 27, 2011) Discovery: Technology May Soon Turn Thoughts Into Action

The Wall Street Journal, Harnessing Brain Power to Move Stuff (August 2, 2011)

Futurity, Brain cap morphs thought into motion (July 28, 2011)

The Economist, Advances in brain-to-machine connections (March 11, 2010)

Science’s career profile on Engineering Solutions to Biomedical Problems (December 12, 2010)

NPR's Science Friday, From thought to movement (March 5, 2010)

Wire Science, 3D hand movements reconstructed using brain signals (March 8, 2010)

Science 2.0, 3-D hand motions inspire portable prosthetic devices (March 2, 2010)

Society for Neuroscience, Researchers reconstruct 3D hand movement using brain signals (March 2, 2010)