I. Source

II. Credibility of Source
Information is from credible source as it comes from a group that counts with senior professional engineers in areas of business, academia and government. The report is generated by practicing engineers with various backgrounds.

III. Summary of Content and Conclusions
Report that attempts to anticipate what changes can be expected in engineering in the future in order to adapt educational programs. It also outlines the ideal attributes of the engineer of 2020, and recommends ways to improve the training of engineers to allow them to address technical, social and ethical questions that will be raised by new technology. In particular the report is divided into four chapters: (1) Technological Context of Engineering Practice, (2) Societal, Global and Professional Contexts of Engineering, (3) Aspirations for the Engineer of 2020, (4) Attributes of Engineers of 2020. In addition, it provides a breakdown of some the possibilities the future may bring by addressing four scenarios: (1) The Next Scientific Revolution, (2) The Biotechnology Revolution in a Societal Context, (3) The Natural World Interrupts the Technology Cycle, and (4) Global Conflict or Globalization?

The report highlights that with the influence of a global market place and drive for engineering services, there will be more and more engineers that need to be involved in setting public policy and participating in the civil arena. In that sense, the engineer of 2020 is represented to have traits such as strong analytical skills, creativity, ingenuity, professionalism, and leadership. The report notes that innovation is key and that the integration of non-engineering field developments along with multidisciplinary engineering efforts toward common goals will be the way forward for the future engineers.

IV. Relevance to the Department of ECE
Awareness of what traits are expected of future engineers can contribute to the planning and verification of curriculum set for the department.
V. **Recommendations for the Department or the IAB**

Providing an awareness to the student body and faculty of the challenges of integration of new technology would be a start. This does not necessarily need to change a defined curriculum, but rather highlight that the rapid changes in technology and where it develops will impact engineers as they extend beyond the commonly thought engineering disciplines and engineers will move into areas that did not commonly employ them.

The biggest impact the department can have when facing a flux of new technologies is to ensure that the students as future engineers accept the responsibility for their own continual reeducation, and while in the university they are taught how to learn and are provided with strong analytical skills. Also, exposing students to the existence and need for multidisciplinary projects will be essential in their development.

VI. **Contact Information**

AVillarreal5@slb.com